Tema IV: Regresión con series de tiempo

Curso: Series Cronológicas

Autor/a
Afiliación

Shu Wei Chou Chen

Posgrado en Estadística (UCR)
Posgrado en Matemática (UCR)

1 librerías

library(ggplot2)
library(forecast)
library(fpp2)
library(astsa)
library(car)
library(gamair)
library(mgcv)

2 Modelo de Regresión

Cambios porcentuales trimestrales (tasas de crecimiento) del gasto de consumo personal real (Y) e ingresos disponibles(X), para EE.UU. desde 1970 a 2016.

data(uschange)

autoplot(uschange[,1:5], facets = TRUE, colour=TRUE) +
  ylab("") + xlab("Year") +
  guides(colour="none")

uschange %>%
  as.data.frame() %>%
  GGally::ggpairs()
Registered S3 method overwritten by 'GGally':
  method from   
  +.gg   ggplot2

mod0 <- lm(
  Consumption ~ Income + Production + Unemployment + Savings,
  data=uschange)
summary(mod0)

Call:
lm(formula = Consumption ~ Income + Production + Unemployment + 
    Savings, data = uschange)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.88296 -0.17638 -0.03679  0.15251  1.20553 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)   0.26729    0.03721   7.184 1.68e-11 ***
Income        0.71449    0.04219  16.934  < 2e-16 ***
Production    0.04589    0.02588   1.773   0.0778 .  
Unemployment -0.20477    0.10550  -1.941   0.0538 .  
Savings      -0.04527    0.00278 -16.287  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3286 on 182 degrees of freedom
Multiple R-squared:  0.754, Adjusted R-squared:  0.7486 
F-statistic: 139.5 on 4 and 182 DF,  p-value: < 2.2e-16
mod0 <- tslm(
  Consumption ~ Income + Production + Unemployment + Savings,
  data=uschange)
summary(mod0)

Call:
tslm(formula = Consumption ~ Income + Production + Unemployment + 
    Savings, data = uschange)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.88296 -0.17638 -0.03679  0.15251  1.20553 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)   0.26729    0.03721   7.184 1.68e-11 ***
Income        0.71449    0.04219  16.934  < 2e-16 ***
Production    0.04589    0.02588   1.773   0.0778 .  
Unemployment -0.20477    0.10550  -1.941   0.0538 .  
Savings      -0.04527    0.00278 -16.287  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3286 on 182 degrees of freedom
Multiple R-squared:  0.754, Adjusted R-squared:  0.7486 
F-statistic: 139.5 on 4 and 182 DF,  p-value: < 2.2e-16
autoplot(uschange[,'Consumption'], series="Data") +
  forecast::autolayer(fitted(mod0), series="Fitted") +
  xlab("Year") + ylab("") +
  ggtitle("Cambio porcentual de gastos de consumo en EE.UUU ") +
  guides(colour=guide_legend(title=" "))

checkresiduals(mod0)


    Breusch-Godfrey test for serial correlation of order up to 8

data:  Residuals from Linear regression model
LM test = 14.874, df = 8, p-value = 0.06163

3 Modelos de tendencia

3.1 Ejemplo con graduados de ITCR de 1975 a 2002

itcrgrad<-read.csv("ITCR.csv",sep=",")
y<-ts(itcrgrad$graduados,start=1975)
autoplot(y) 

3.2 Crear variables independientes

tiempo<-seq(1,length(y))
tiempo2<-tiempo^2

datos.itcrgrad<-data.frame(y,tiempo,tiempo2)

mod1<-lm(y~tiempo+tiempo2,datos.itcrgrad)
summary(mod1)

Call:
lm(formula = y ~ tiempo + tiempo2, data = datos.itcrgrad)

Residuals:
     Min       1Q   Median       3Q      Max 
-117.932  -49.683    4.506   43.234  155.390 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 127.0021    43.6818   2.907  0.00753 ** 
tiempo      -12.7887     6.9427  -1.842  0.07736 .  
tiempo2       1.5612     0.2323   6.720 4.83e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 71.61 on 25 degrees of freedom
Multiple R-squared:  0.944, Adjusted R-squared:  0.9395 
F-statistic: 210.6 on 2 and 25 DF,  p-value: 2.268e-16
mod.ts1<-tslm(y~trend+trend^2) #note la salida no incluye al tendencia al cuadrado.
summary(mod.ts1)

Call:
tslm(formula = y ~ trend + trend^2)

Residuals:
    Min      1Q  Median      3Q     Max 
-183.89  -78.69  -23.75   90.52  273.76 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -99.373     45.678  -2.175   0.0389 *  
trend         32.486      2.752  11.805 6.03e-12 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 117.6 on 26 degrees of freedom
Multiple R-squared:  0.8428,    Adjusted R-squared:  0.8367 
F-statistic: 139.3 on 1 and 26 DF,  p-value: 6.026e-12
mod.ts2<-tslm(y~trend+I(trend^2))
summary(mod.ts2)

Call:
tslm(formula = y ~ trend + I(trend^2))

Residuals:
     Min       1Q   Median       3Q      Max 
-117.932  -49.683    4.506   43.234  155.390 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 127.0021    43.6818   2.907  0.00753 ** 
trend       -12.7887     6.9427  -1.842  0.07736 .  
I(trend^2)    1.5612     0.2323   6.720 4.83e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 71.61 on 25 degrees of freedom
Multiple R-squared:  0.944, Adjusted R-squared:  0.9395 
F-statistic: 210.6 on 2 and 25 DF,  p-value: 2.268e-16
par(mfrow = c(1,1))
e<-mod1$residuals

3.3 Normalidad

hist(e)

shapiro.test(e)

    Shapiro-Wilk normality test

data:  e
W = 0.97509, p-value = 0.7211

3.4 Homoscedasticidad

ts.plot(e)

lmtest::bptest(mod1)

    studentized Breusch-Pagan test

data:  mod1
BP = 1.0404, df = 2, p-value = 0.5944

3.5 Autocorrelación

lag1.plot(e)

acf(mod1$residuals)

durbinWatsonTest(mod1) #solamente considera un rezago
 lag Autocorrelation D-W Statistic p-value
   1       0.1488158      1.576164   0.104
 Alternative hypothesis: rho != 0
checkresiduals(mod1)


    Breusch-Godfrey test for serial correlation of order up to 6

data:  Residuals
LM test = 3.9215, df = 6, p-value = 0.6873

4 Regresión con series estacionales

turistas<-read.csv("turistas.csv",sep=";")
y<-ts(turistas$turistas,start=c(1991,1),frequency=12)

4.1 transformacion logarítmica

w<-log(y)
autoplot(y) 

autoplot(w)

tiempo<-seq(1,length(y))
tiempo2<-tiempo^2
mes<-rep(seq(1,12),10)
mes<-as.factor(mes)

datos1<-data.frame(w,tiempo,tiempo2,mes)
mod1<-lm(w~tiempo+tiempo2+mes,datos1)
summary(mod1)

Call:
lm(formula = w ~ tiempo + tiempo2 + mes, data = datos1)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.188378 -0.048245  0.007514  0.052592  0.135323 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.094e+01  2.940e-02 372.182  < 2e-16 ***
tiempo       8.617e-03  7.707e-04  11.181  < 2e-16 ***
tiempo2     -1.992e-05  6.169e-06  -3.229 0.001654 ** 
mes2        -1.013e-01  3.243e-02  -3.125 0.002297 ** 
mes3        -1.181e-01  3.243e-02  -3.641 0.000422 ***
mes4        -3.467e-01  3.243e-02 -10.690  < 2e-16 ***
mes5        -5.050e-01  3.244e-02 -15.568  < 2e-16 ***
mes6        -4.243e-01  3.244e-02 -13.077  < 2e-16 ***
mes7        -2.037e-01  3.245e-02  -6.278 7.65e-09 ***
mes8        -3.326e-01  3.246e-02 -10.248  < 2e-16 ***
mes9        -6.091e-01  3.247e-02 -18.760  < 2e-16 ***
mes10       -5.293e-01  3.248e-02 -16.299  < 2e-16 ***
mes11       -3.263e-01  3.249e-02 -10.043  < 2e-16 ***
mes12       -1.042e-01  3.250e-02  -3.207 0.001775 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.07251 on 106 degrees of freedom
Multiple R-squared:  0.9439,    Adjusted R-squared:  0.937 
F-statistic: 137.3 on 13 and 106 DF,  p-value: < 2.2e-16
levels(datos1$mes)
 [1] "1"  "2"  "3"  "4"  "5"  "6"  "7"  "8"  "9"  "10" "11" "12"
datos2 <- within(datos1, mes <- relevel(mes, ref = 12))
levels(datos2$mes)
 [1] "12" "1"  "2"  "3"  "4"  "5"  "6"  "7"  "8"  "9"  "10" "11"
mod2 <- lm(w~tiempo+tiempo2+mes,datos2)
summary(mod2)

Call:
lm(formula = w ~ tiempo + tiempo2 + mes, data = datos2)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.188378 -0.048245  0.007514  0.052592  0.135323 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.084e+01  3.022e-02 358.594  < 2e-16 ***
tiempo       8.617e-03  7.707e-04  11.181  < 2e-16 ***
tiempo2     -1.992e-05  6.169e-06  -3.229  0.00165 ** 
mes1         1.042e-01  3.250e-02   3.207  0.00177 ** 
mes2         2.885e-03  3.249e-02   0.089  0.92940    
mes3        -1.386e-02  3.248e-02  -0.427  0.67035    
mes4        -2.425e-01  3.247e-02  -7.470 2.39e-11 ***
mes5        -4.008e-01  3.246e-02 -12.348  < 2e-16 ***
mes6        -3.201e-01  3.245e-02  -9.863  < 2e-16 ***
mes7        -9.952e-02  3.244e-02  -3.067  0.00274 ** 
mes8        -2.284e-01  3.244e-02  -7.041 1.98e-10 ***
mes9        -5.049e-01  3.243e-02 -15.565  < 2e-16 ***
mes10       -4.251e-01  3.243e-02 -13.108  < 2e-16 ***
mes11       -2.220e-01  3.243e-02  -6.847 5.09e-10 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.07251 on 106 degrees of freedom
Multiple R-squared:  0.9439,    Adjusted R-squared:  0.937 
F-statistic: 137.3 on 13 and 106 DF,  p-value: < 2.2e-16

4.2 Pronóstico

mod1<-lm(w~tiempo+tiempo2+mes,datos1)
summary(mod1)

Call:
lm(formula = w ~ tiempo + tiempo2 + mes, data = datos1)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.188378 -0.048245  0.007514  0.052592  0.135323 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.094e+01  2.940e-02 372.182  < 2e-16 ***
tiempo       8.617e-03  7.707e-04  11.181  < 2e-16 ***
tiempo2     -1.992e-05  6.169e-06  -3.229 0.001654 ** 
mes2        -1.013e-01  3.243e-02  -3.125 0.002297 ** 
mes3        -1.181e-01  3.243e-02  -3.641 0.000422 ***
mes4        -3.467e-01  3.243e-02 -10.690  < 2e-16 ***
mes5        -5.050e-01  3.244e-02 -15.568  < 2e-16 ***
mes6        -4.243e-01  3.244e-02 -13.077  < 2e-16 ***
mes7        -2.037e-01  3.245e-02  -6.278 7.65e-09 ***
mes8        -3.326e-01  3.246e-02 -10.248  < 2e-16 ***
mes9        -6.091e-01  3.247e-02 -18.760  < 2e-16 ***
mes10       -5.293e-01  3.248e-02 -16.299  < 2e-16 ***
mes11       -3.263e-01  3.249e-02 -10.043  < 2e-16 ***
mes12       -1.042e-01  3.250e-02  -3.207 0.001775 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.07251 on 106 degrees of freedom
Multiple R-squared:  0.9439,    Adjusted R-squared:  0.937 
F-statistic: 137.3 on 13 and 106 DF,  p-value: < 2.2e-16
try(
pronostico<-forecast(mod1) #error
)
Error in as.data.frame(newdata) : 
  el argumento "newdata" está ausente, sin valor por omisión
mod3<-tslm(w~trend+I(trend^2)+season)
summary(mod3)

Call:
tslm(formula = w ~ trend + I(trend^2) + season)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.188378 -0.048245  0.007514  0.052592  0.135323 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.094e+01  2.940e-02 372.182  < 2e-16 ***
trend        8.617e-03  7.707e-04  11.181  < 2e-16 ***
I(trend^2)  -1.992e-05  6.169e-06  -3.229 0.001654 ** 
season2     -1.013e-01  3.243e-02  -3.125 0.002297 ** 
season3     -1.181e-01  3.243e-02  -3.641 0.000422 ***
season4     -3.467e-01  3.243e-02 -10.690  < 2e-16 ***
season5     -5.050e-01  3.244e-02 -15.568  < 2e-16 ***
season6     -4.243e-01  3.244e-02 -13.077  < 2e-16 ***
season7     -2.037e-01  3.245e-02  -6.278 7.65e-09 ***
season8     -3.326e-01  3.246e-02 -10.248  < 2e-16 ***
season9     -6.091e-01  3.247e-02 -18.760  < 2e-16 ***
season10    -5.293e-01  3.248e-02 -16.299  < 2e-16 ***
season11    -3.263e-01  3.249e-02 -10.043  < 2e-16 ***
season12    -1.042e-01  3.250e-02  -3.207 0.001775 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.07251 on 106 degrees of freedom
Multiple R-squared:  0.9439,    Adjusted R-squared:  0.937 
F-statistic: 137.3 on 13 and 106 DF,  p-value: < 2.2e-16
pronostico<-forecast(mod3,h=12)
pronostico
         Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
Jan 2001       11.69308 11.59176 11.79439 11.53732 11.84883
Feb 2001       11.59552 11.49401 11.69704 11.43945 11.75159
Mar 2001       11.58251 11.48078 11.68425 11.42611 11.73892
Apr 2001       11.35756 11.25560 11.45952 11.20080 11.51431
May 2001       11.20294 11.10074 11.30513 11.04582 11.36006
Jun 2001       11.28729 11.18484 11.38974 11.12979 11.44479
Jul 2001       11.51140 11.40870 11.61411 11.35351 11.66930
Aug 2001       11.38605 11.28307 11.48902 11.22774 11.54436
Sep 2001       11.11311 11.00986 11.21636 10.95437 11.27185
Oct 2001       11.19632 11.09278 11.29985 11.03714 11.35549
Nov 2001       11.40279 11.29895 11.50663 11.24315 11.56243
Dec 2001       11.62822 11.52407 11.73236 11.46811 11.78833
autoplot(w) +
  ylab("ln Y") +
  autolayer(mod3$fitted.values, series = "ajustado") +
  autolayer(pronostico, series = "pronostico")

checkresiduals(mod3)


    Breusch-Godfrey test for serial correlation of order up to 24

data:  Residuals from Linear regression model
LM test = 69.582, df = 24, p-value = 2.529e-06
y<-ts(turistas$turistas,start=c(1991,1),frequency=12)
y.train<-window(y,start=c(1991,1),end=c(1999,12))
y.test<-window(y,start=c(2000,1),end=c(2000,12))
mod4<-tslm(y.train~trend+I(trend^2)+season)
summary(mod4)

Call:
tslm(formula = y.train ~ trend + I(trend^2) + season)

Residuals:
     Min       1Q   Median       3Q      Max 
-16096.7  -3411.3    833.9   3542.2  15635.4 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  6.285e+04  2.312e+03  27.188  < 2e-16 ***
trend        4.557e+02  6.746e+01   6.755 1.18e-09 ***
I(trend^2)  -5.924e-01  5.994e-01  -0.988 0.325522    
season2     -8.809e+03  2.552e+03  -3.452 0.000836 ***
season3     -1.006e+04  2.552e+03  -3.942 0.000156 ***
season4     -2.517e+04  2.552e+03  -9.860 3.65e-16 ***
season5     -3.402e+04  2.553e+03 -13.325  < 2e-16 ***
season6     -2.947e+04  2.553e+03 -11.540  < 2e-16 ***
season7     -1.574e+04  2.554e+03  -6.162 1.77e-08 ***
season8     -2.419e+04  2.555e+03  -9.470 2.46e-15 ***
season9     -3.947e+04  2.556e+03 -15.446  < 2e-16 ***
season10    -3.551e+04  2.556e+03 -13.890  < 2e-16 ***
season11    -2.476e+04  2.558e+03  -9.680 8.82e-16 ***
season12    -8.906e+03  2.559e+03  -3.481 0.000761 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5414 on 94 degrees of freedom
Multiple R-squared:  0.9158,    Adjusted R-squared:  0.9041 
F-statistic:  78.6 on 13 and 94 DF,  p-value: < 2.2e-16
pronostico<-forecast(mod4,h=12)
pronostico
         Point Forecast    Lo 80     Hi 80    Lo 95     Hi 95
Jan 2000      105476.42 97842.25 113110.58 93731.85 117220.99
Feb 2000       96993.44 89340.12 104646.77 85219.39 108767.49
Mar 2000       96067.58 88394.02 103741.15 84262.40 107872.77
Apr 2000       81283.94 73589.07  88978.81 69445.98  93121.90
May 2000       72754.64 65037.40  80471.87 60882.27  84627.00
Jun 2000       77627.00 69886.35  85367.64 65718.62  89535.38
Jul 2000       91675.80 83910.71  99440.89 79729.81 103621.80
Aug 2000       83540.16 75749.59  91330.73 71554.97  95525.36
Sep 2000       68577.97 60760.90  76395.04 56552.01  80603.93
Oct 2000       72856.77 65012.19  80701.35 60788.49  84925.05
Nov 2000       83927.02 76053.94  91800.11 71814.89  96039.16
Dec 2000      100091.16 92188.58 107993.74 87933.65 112248.67
accuracy(pronostico)
                        ME     RMSE      MAE        MPE     MAPE      MASE
Training set -3.368499e-14 5050.477 4024.289 -0.3434747 6.726303 0.6524221
                 ACF1
Training set 0.623945
accuracy(pronostico,y.test)
                        ME     RMSE      MAE        MPE     MAPE      MASE
Training set -3.368499e-14 5050.477 4024.289 -0.3434747 6.726303 0.6524221
Test set      4.766925e+03 8704.755 6962.741  4.0412577 7.106520 1.1288072
                  ACF1 Theil's U
Training set 0.6239450        NA
Test set     0.5177485 0.5156388

4.3 Modelos aditivos generalizados

data("cairo")
ctamm <- gamm(temp~s(day.of.year,bs="cc",k=20)+s(time,bs="cr"),
              data=cairo,correlation=corAR1(form=~1|year))

pred<-fitted(ctamm$gam)
plot(cairo$temp~cairo$time,type="l", ylab="temp",xlab="time")
points(cairo$time,pred,type="l",col=2,lwd=2)

plot(cairo$temp,xlab='Day',ylab='Brightness')

x<-cairo$temp
x.spec <-mvspec(x,log="no")

plot(x.spec)
frecuencia<-x.spec$freq[x.spec$spec==max(x.spec$spec)]
abline(v=frecuencia,col=2)

1/frecuencia
[1] 349.0909
cos1<-cos(2*pi*frecuencia*cairo$time)
sin1<-sin(2*pi*frecuencia*cairo$time)
data=data.frame(x=x,time=cairo$time,cos=cos1,sen=sin1)
mod<-lm(x~cos1+sin1,data=data)
plot(cairo$temp~cairo$time,type="l", ylab="temp",xlab="time")
points(cairo$time,fitted(mod),type="l",col=2,lwd=2)