Tema I: Análisis exploratorio de series temporales

Curso: Series Cronológicas

Autor/a
Afiliación

Shu Wei Chou Chen

Posgrado en Estadística (UCR)
Posgrado en Matemática (UCR)

1 Librerías

library(ggfortify)
library(forecast)
library(fpp2)
library(data.table)
library(TTR)
library(xts)
library(tidyverse)
library(lubridate)
library(quantmod)

2 Ejemplo: Pasajeros de avión

data("AirPassengers")
AirPassengers
     Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1949 112 118 132 129 121 135 148 148 136 119 104 118
1950 115 126 141 135 125 149 170 170 158 133 114 140
1951 145 150 178 163 172 178 199 199 184 162 146 166
1952 171 180 193 181 183 218 230 242 209 191 172 194
1953 196 196 236 235 229 243 264 272 237 211 180 201
1954 204 188 235 227 234 264 302 293 259 229 203 229
1955 242 233 267 269 270 315 364 347 312 274 237 278
1956 284 277 317 313 318 374 413 405 355 306 271 306
1957 315 301 356 348 355 422 465 467 404 347 305 336
1958 340 318 362 348 363 435 491 505 404 359 310 337
1959 360 342 406 396 420 472 548 559 463 407 362 405
1960 417 391 419 461 472 535 622 606 508 461 390 432
class(AirPassengers)
[1] "ts"
AP <- as.numeric(AirPassengers)
class(AP)
[1] "numeric"
# Serie de tiempo como un vector indexado.
AP.data <- data.frame(tiempo=seq_along(AP),pasajero=AP)
AP.data
    tiempo pasajero
1        1      112
2        2      118
3        3      132
4        4      129
5        5      121
6        6      135
7        7      148
8        8      148
9        9      136
10      10      119
11      11      104
12      12      118
13      13      115
14      14      126
15      15      141
16      16      135
17      17      125
18      18      149
19      19      170
20      20      170
21      21      158
22      22      133
23      23      114
24      24      140
25      25      145
26      26      150
27      27      178
28      28      163
29      29      172
30      30      178
31      31      199
32      32      199
33      33      184
34      34      162
35      35      146
36      36      166
37      37      171
38      38      180
39      39      193
40      40      181
41      41      183
42      42      218
43      43      230
44      44      242
45      45      209
46      46      191
47      47      172
48      48      194
49      49      196
50      50      196
51      51      236
52      52      235
53      53      229
54      54      243
55      55      264
56      56      272
57      57      237
58      58      211
59      59      180
60      60      201
61      61      204
62      62      188
63      63      235
64      64      227
65      65      234
66      66      264
67      67      302
68      68      293
69      69      259
70      70      229
71      71      203
72      72      229
73      73      242
74      74      233
75      75      267
76      76      269
77      77      270
78      78      315
79      79      364
80      80      347
81      81      312
82      82      274
83      83      237
84      84      278
85      85      284
86      86      277
87      87      317
88      88      313
89      89      318
90      90      374
91      91      413
92      92      405
93      93      355
94      94      306
95      95      271
96      96      306
97      97      315
98      98      301
99      99      356
100    100      348
101    101      355
102    102      422
103    103      465
104    104      467
105    105      404
106    106      347
107    107      305
108    108      336
109    109      340
110    110      318
111    111      362
112    112      348
113    113      363
114    114      435
115    115      491
116    116      505
117    117      404
118    118      359
119    119      310
120    120      337
121    121      360
122    122      342
123    123      406
124    124      396
125    125      420
126    126      472
127    127      548
128    128      559
129    129      463
130    130      407
131    131      362
132    132      405
133    133      417
134    134      391
135    135      419
136    136      461
137    137      472
138    138      535
139    139      622
140    140      606
141    141      508
142    142      461
143    143      390
144    144      432

2.1 Formas diferentes de graficar.

plot(AP.data$tiempo,AP.data$pasajero)

plot(AP.data$tiempo,AP.data$pasajero,type="l")

ggplot(AP.data, aes(x=tiempo,y=pasajero)) + geom_line()

2.2 Diferentes objetos en R.

str(AirPassengers)
 Time-Series [1:144] from 1949 to 1961: 112 118 132 129 121 135 148 148 136 119 ...
str(AP)
 num [1:144] 112 118 132 129 121 135 148 148 136 119 ...

2.3 Algunas características de un objeto ts.

AP.ts <- ts(AP, start = c(1949, 1), frequency = 12)
str(AP.ts)
 Time-Series [1:144] from 1949 to 1961: 112 118 132 129 121 135 148 148 136 119 ...
frequency(AP.ts) #la frecuencia de la serie
[1] 12
cycle(AP.ts) #verificar el ciclo de cada observación
     Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1949   1   2   3   4   5   6   7   8   9  10  11  12
1950   1   2   3   4   5   6   7   8   9  10  11  12
1951   1   2   3   4   5   6   7   8   9  10  11  12
1952   1   2   3   4   5   6   7   8   9  10  11  12
1953   1   2   3   4   5   6   7   8   9  10  11  12
1954   1   2   3   4   5   6   7   8   9  10  11  12
1955   1   2   3   4   5   6   7   8   9  10  11  12
1956   1   2   3   4   5   6   7   8   9  10  11  12
1957   1   2   3   4   5   6   7   8   9  10  11  12
1958   1   2   3   4   5   6   7   8   9  10  11  12
1959   1   2   3   4   5   6   7   8   9  10  11  12
1960   1   2   3   4   5   6   7   8   9  10  11  12

La función plot toma en cuenta el tipo de objeto.

ts.plot(AP.ts)

plot(AP)

plot(AP.ts)

autoplot(AP.ts) + labs(x ="tiempo", y = "pasajeros (miles)", title=" Pasajeros (1949-1961)") 

2.4 Otras posibilidades de gráficos.

Personalizar el gráfico usando el vector de tiempo.

year <- rep(1949:1960,each=12)
month <- rep(1:12, times=12)
AP.data <- AP.data %>% mutate('year'=year, 'month'=month)

AP.data1 <- AP.data %>% 
            mutate(date = make_datetime(year = year, month = month))

AP.data1$date <- as.Date(AP.data1$date)
str(AP.data1)
'data.frame':   144 obs. of  5 variables:
 $ tiempo  : int  1 2 3 4 5 6 7 8 9 10 ...
 $ pasajero: num  112 118 132 129 121 135 148 148 136 119 ...
 $ year    : int  1949 1949 1949 1949 1949 1949 1949 1949 1949 1949 ...
 $ month   : int  1 2 3 4 5 6 7 8 9 10 ...
 $ date    : Date, format: "1949-01-01" "1949-02-01" ...
plot1 <- ggplot(AP.data1, aes(x=date,y=pasajero)) + 
    geom_line() 
plot1

plot1 + scale_x_date(date_labels = "%m-%Y")

plot1 + scale_x_date(date_breaks = "1 month")

plot1 + scale_x_date(date_breaks = "6 month")

plot1 + scale_x_date(date_breaks = "1 year")

plot1 + scale_x_date(date_breaks = "2 year")

2.5 Descomposición de series

decomposeAP <- decompose(AP.ts,"multiplicative")
autoplot(decomposeAP)

¿Qué notamos en este gráfico? tendencia, ciclos, estacionalidad.

2.6 2. Efecto estacional

Interpretación de estos gráficos.

boxplot(AP.ts~cycle(AP.ts),xlab="mes", ylab = "pasajeros (miles)")

ggseasonplot(AP.ts, year.labels=FALSE, continuous=TRUE)

ggseasonplot(AP.ts, year.labels=FALSE, continuous=TRUE, polar = TRUE)

3 Ejemplo: Producción de cemento (cuatrimetre)

cemento<-fpp2::qcement
str(cemento)
 Time-Series [1:233] from 1956 to 2014: 0.465 0.532 0.561 0.57 0.529 0.604 0.603 0.582 0.554 0.62 ...
head(cemento)
      Qtr1  Qtr2  Qtr3  Qtr4
1956 0.465 0.532 0.561 0.570
1957 0.529 0.604            
tail(cemento)
      Qtr1  Qtr2  Qtr3  Qtr4
2012                   2.503
2013 2.049 2.528 2.637 2.565
2014 2.229                  

Interpretación de estos gráficos.

autoplot(cemento)

ggseasonplot(cemento, year.labels=FALSE, continuous=TRUE)

ggsubseriesplot(cemento)

4 Ejemplo: gasto de medicamento anti-diabético (mensual)

medicamento<-fpp2::a10
autoplot(medicamento)

ggseasonplot(medicamento, year.labels=FALSE, continuous=TRUE)

ggseasonplot(medicamento, year.labels=FALSE, continuous=TRUE, polar = TRUE)

ggsubseriesplot(medicamento)

5 Ejemplo: Producción de cerveza en Australia

cerveza<-fpp2::ausbeer
autoplot(cerveza)

ggseasonplot(cerveza, year.labels=FALSE, continuous=TRUE)

ggsubseriesplot(cerveza)

5.1 Lagplot

gglagplot(cerveza,lags=16)

gglagplot(cerveza,lags=16,do.lines=FALSE)

h=1
gglagplot(cerveza,lags=h,do.lines=FALSE)

cerveza.shift<-shift(cerveza,n=h,type="lag")
cbind(cerveza,cerveza.shift)
        cerveza cerveza.shift
1956 Q1     284            NA
1956 Q2     213           284
1956 Q3     227           213
1956 Q4     308           227
1957 Q1     262           308
1957 Q2     228           262
1957 Q3     236           228
1957 Q4     320           236
1958 Q1     272           320
1958 Q2     233           272
1958 Q3     237           233
1958 Q4     313           237
1959 Q1     261           313
1959 Q2     227           261
1959 Q3     250           227
1959 Q4     314           250
1960 Q1     286           314
1960 Q2     227           286
1960 Q3     260           227
1960 Q4     311           260
1961 Q1     295           311
1961 Q2     233           295
1961 Q3     257           233
1961 Q4     339           257
1962 Q1     279           339
1962 Q2     250           279
1962 Q3     270           250
1962 Q4     346           270
1963 Q1     294           346
1963 Q2     255           294
1963 Q3     278           255
1963 Q4     363           278
1964 Q1     313           363
1964 Q2     273           313
1964 Q3     300           273
1964 Q4     370           300
1965 Q1     331           370
1965 Q2     288           331
1965 Q3     306           288
1965 Q4     386           306
1966 Q1     335           386
1966 Q2     288           335
1966 Q3     308           288
1966 Q4     402           308
1967 Q1     353           402
1967 Q2     316           353
1967 Q3     325           316
1967 Q4     405           325
1968 Q1     393           405
1968 Q2     319           393
1968 Q3     327           319
1968 Q4     442           327
1969 Q1     383           442
1969 Q2     332           383
1969 Q3     361           332
1969 Q4     446           361
1970 Q1     387           446
1970 Q2     357           387
1970 Q3     374           357
1970 Q4     466           374
1971 Q1     410           466
1971 Q2     370           410
1971 Q3     379           370
1971 Q4     487           379
1972 Q1     419           487
1972 Q2     378           419
1972 Q3     393           378
1972 Q4     506           393
1973 Q1     458           506
1973 Q2     387           458
1973 Q3     427           387
1973 Q4     565           427
1974 Q1     465           565
1974 Q2     445           465
1974 Q3     450           445
1974 Q4     556           450
1975 Q1     500           556
1975 Q2     452           500
1975 Q3     435           452
1975 Q4     554           435
1976 Q1     510           554
1976 Q2     433           510
1976 Q3     453           433
1976 Q4     548           453
1977 Q1     486           548
1977 Q2     453           486
1977 Q3     457           453
1977 Q4     566           457
1978 Q1     515           566
1978 Q2     464           515
1978 Q3     431           464
1978 Q4     588           431
1979 Q1     503           588
1979 Q2     443           503
1979 Q3     448           443
1979 Q4     555           448
1980 Q1     513           555
1980 Q2     427           513
1980 Q3     473           427
1980 Q4     526           473
1981 Q1     548           526
1981 Q2     440           548
1981 Q3     469           440
1981 Q4     575           469
1982 Q1     493           575
1982 Q2     433           493
1982 Q3     480           433
1982 Q4     576           480
1983 Q1     475           576
1983 Q2     405           475
1983 Q3     435           405
1983 Q4     535           435
1984 Q1     453           535
1984 Q2     430           453
1984 Q3     417           430
1984 Q4     552           417
1985 Q1     464           552
1985 Q2     417           464
1985 Q3     423           417
1985 Q4     554           423
1986 Q1     459           554
1986 Q2     428           459
1986 Q3     429           428
1986 Q4     534           429
1987 Q1     481           534
1987 Q2     416           481
1987 Q3     440           416
1987 Q4     538           440
1988 Q1     474           538
1988 Q2     440           474
1988 Q3     447           440
1988 Q4     598           447
1989 Q1     467           598
1989 Q2     439           467
1989 Q3     446           439
1989 Q4     567           446
1990 Q1     485           567
1990 Q2     441           485
1990 Q3     429           441
1990 Q4     599           429
1991 Q1     464           599
1991 Q2     424           464
1991 Q3     436           424
1991 Q4     574           436
1992 Q1     443           574
1992 Q2     410           443
1992 Q3     420           410
1992 Q4     532           420
1993 Q1     433           532
1993 Q2     421           433
1993 Q3     410           421
1993 Q4     512           410
1994 Q1     449           512
1994 Q2     381           449
1994 Q3     423           381
1994 Q4     531           423
1995 Q1     426           531
1995 Q2     408           426
1995 Q3     416           408
1995 Q4     520           416
1996 Q1     409           520
1996 Q2     398           409
1996 Q3     398           398
1996 Q4     507           398
1997 Q1     432           507
1997 Q2     398           432
1997 Q3     406           398
1997 Q4     526           406
1998 Q1     428           526
1998 Q2     397           428
1998 Q3     403           397
1998 Q4     517           403
1999 Q1     435           517
1999 Q2     383           435
1999 Q3     424           383
1999 Q4     521           424
2000 Q1     421           521
2000 Q2     402           421
2000 Q3     414           402
2000 Q4     500           414
2001 Q1     451           500
2001 Q2     380           451
2001 Q3     416           380
2001 Q4     492           416
2002 Q1     428           492
2002 Q2     408           428
2002 Q3     406           408
2002 Q4     506           406
2003 Q1     435           506
2003 Q2     380           435
2003 Q3     421           380
2003 Q4     490           421
2004 Q1     435           490
2004 Q2     390           435
2004 Q3     412           390
2004 Q4     454           412
2005 Q1     416           454
2005 Q2     403           416
2005 Q3     408           403
2005 Q4     482           408
2006 Q1     438           482
2006 Q2     386           438
2006 Q3     405           386
2006 Q4     491           405
2007 Q1     427           491
2007 Q2     383           427
2007 Q3     394           383
2007 Q4     473           394
2008 Q1     420           473
2008 Q2     390           420
2008 Q3     410           390
2008 Q4     488           410
2009 Q1     415           488
2009 Q2     398           415
2009 Q3     419           398
2009 Q4     488           419
2010 Q1     414           488
2010 Q2     374           414
plot(cerveza~cerveza.shift,xlim=c(200,600),ylim=c(200,600),
     xy.labels=FALSE,col=cycle(cerveza),pch=20)

cor(cerveza[-1],cerveza.shift[-1])
[1] 0.687697

5.2 Funcion de autocorrelacion

acf(cerveza)

ggAcf(cerveza)

acf(ausbeer, plot = FALSE)

Autocorrelations of series 'ausbeer', by lag

 0.00  0.25  0.50  0.75  1.00  1.25  1.50  1.75  2.00  2.25  2.50  2.75  3.00 
1.000 0.684 0.500 0.667 0.940 0.644 0.458 0.621 0.887 0.598 0.410 0.574 0.835 
 3.25  3.50  3.75  4.00  4.25  4.50  4.75  5.00  5.25  5.50  5.75 
0.543 0.354 0.519 0.770 0.481 0.300 0.454 0.704 0.418 0.236 0.393 

6 Ejemplo: Muertes por accidente en EU 1973-1978

autoplot(USAccDeaths)

ggseasonplot(USAccDeaths, year.labels=FALSE, continuous=TRUE)

gglagplot(USAccDeaths,lags=16)

7 Ejemplo: Series multivariadas

arrivals<-fpp2::arrivals
str(arrivals)
 Time-Series [1:127, 1:4] from 1981 to 2012: 14.76 9.32 10.17 19.51 17.12 ...
 - attr(*, "dimnames")=List of 2
  ..$ : NULL
  ..$ : chr [1:4] "Japan" "NZ" "UK" "US"
arrivals
          Japan      NZ      UK      US
1981 Q1  14.763  49.140  45.266  32.316
1981 Q2   9.321  87.467  19.886  23.721
1981 Q3  10.166  85.841  24.839  24.533
1981 Q4  19.509  61.882  52.264  33.438
1982 Q1  17.117  42.045  53.636  33.527
1982 Q2  10.617  63.081  34.802  28.366
1982 Q3  11.737  73.275  31.126  30.856
1982 Q4  20.961  54.808  53.619  33.293
1983 Q1  20.671  41.030  43.423  32.472
1983 Q2  12.235  56.155  23.421  32.369
1983 Q3  14.567  69.395  29.142  37.476
1983 Q4  24.363  58.423  51.771  38.112
1984 Q1  23.169  37.039  44.182  42.553
1984 Q2  16.296  71.564  24.920  41.277
1984 Q3  18.504  71.260  27.566  33.056
1984 Q4  29.938  54.597  48.880  44.472
1985 Q1  30.240  41.646  49.563  47.792
1985 Q2  20.280  63.668  23.867  43.070
1985 Q3  20.908  67.803  25.895  41.116
1985 Q4  36.169  72.177  54.092  65.428
1986 Q1  37.989  55.192  54.903  59.377
1986 Q2  32.366  89.073  26.089  53.283
1986 Q3  28.131  97.746  28.248  48.510
1986 Q4  47.150  94.696  66.813  85.878
1987 Q1  51.736  71.130  61.167  84.130
1987 Q2  38.254 111.416  32.400  64.347
1987 Q3  53.807 127.619  33.287  65.976
1987 Q4  71.807 117.078  72.115  96.165
1988 Q1  80.300  90.498  81.925  78.609
1988 Q2  79.596 135.435  42.091  69.306
1988 Q3  88.708 176.899  46.253  86.267
1988 Q4 103.738 131.457  90.062  92.738
1989 Q1  94.172  83.029  84.191  73.321
1989 Q2  76.462 111.748  48.709  59.819
1989 Q3  88.393 128.510  46.905  60.868
1989 Q4  90.527 126.021  93.075  67.761
1990 Q1 119.654  75.584  81.185  67.637
1990 Q2 106.965 109.472  53.693  56.153
1990 Q3 128.472 122.164  48.037  58.783
1990 Q4 124.773 111.222  94.827  69.018
1991 Q1 119.638  90.067  79.365  63.235
1991 Q2 115.049 114.050  52.961  56.691
1991 Q3 140.470 152.662  42.366  85.473
1991 Q4 153.436 123.821  89.041  66.332
1992 Q1 166.732  75.376  87.850  69.861
1992 Q2 141.886 107.369  57.261  61.501
1992 Q3 160.455 128.550  51.058  57.869
1992 Q4 160.807 136.250  93.736  73.632
1993 Q1 178.466  90.758  95.137  76.323
1993 Q2 151.904 124.972  55.661  62.718
1993 Q3 168.131 153.153  56.400  64.731
1993 Q4 172.358 130.393 103.089  77.495
1994 Q1 191.367  90.095 100.250  81.428
1994 Q2 158.207 113.799  57.464  63.554
1994 Q3 183.289 148.605  61.831  66.505
1994 Q4 188.273 127.879 115.736  78.190
1995 Q1 196.480  95.295 112.684  83.047
1995 Q2 174.307 130.073  64.209  67.448
1995 Q3 214.067 166.383  59.287  69.234
1995 Q4 197.850 146.632 111.719  85.160
1996 Q1 227.335 132.410 108.173  84.995
1996 Q2 174.325 166.735  64.632  71.005
1996 Q3 219.347 205.120  64.742  71.412
1996 Q4 192.137 167.569 129.994  89.483
1997 Q1 223.640 142.502 126.261  87.405
1997 Q2 167.269 160.522  65.146  73.061
1997 Q3 227.641 205.250  74.071  79.986
1997 Q4 195.350 177.366 145.139  89.141
1998 Q1 205.468 128.179 143.115 101.167
1998 Q2 168.520 184.943  82.747  85.384
1998 Q3 200.860 212.263  78.303  82.586
1998 Q4 176.235 183.996 163.356 104.760
1999 Q1 193.822 143.015 160.239 113.860
1999 Q2 154.860 179.577  81.152  92.494
1999 Q3 188.080 215.732 107.941  95.001
1999 Q4 170.689 190.461 179.102 115.704
2000 Q1 192.023 154.537 161.953 118.840
2000 Q2 154.701 212.401 105.394 107.313
2000 Q3 182.130 229.048 107.231 131.833
2000 Q4 192.135 221.071 205.874 130.100
2001 Q1 193.645 162.480 184.901 126.702
2001 Q2 156.303 215.840 107.454 113.471
2001 Q3 186.861 233.074 121.889 105.239
2001 Q4 136.748 203.493 202.988 101.058
2002 Q1 177.263 159.879 206.655 121.127
2002 Q2 158.357 191.215  95.564  97.016
2002 Q3 183.821 226.008 115.950 102.261
2002 Q4 196.006 213.000 224.496 114.103
2003 Q1 176.132 150.700 196.276 112.908
2003 Q2 102.633 203.400 107.563  94.212
2003 Q3 156.396 241.800 125.171 102.961
2003 Q4 192.591 243.200 243.894 112.039
2004 Q1 185.175 188.873 205.423 114.017
2004 Q2 153.363 252.262 111.924 101.065
2004 Q3 181.659 312.956 125.132 105.884
2004 Q4 190.143 278.709 233.761 112.335
2005 Q1 193.547 219.527 235.242 122.725
2005 Q2 135.461 270.782 105.370 104.542
2005 Q3 176.242 325.633 131.141 107.725
2005 Q4 180.085 282.908 237.053 111.286
2006 Q1 189.187 212.323 224.933 123.608
2006 Q2 128.920 269.964 116.211 109.865
2006 Q3 163.649 307.149 123.808 107.787
2006 Q4 169.314 286.361 269.292 114.824
2007 Q1 165.823 219.885 231.686 124.677
2007 Q2 111.484 301.654 108.543 108.089
2007 Q3 149.065 320.737 122.734 107.738
2007 Q4 146.673 295.727 226.031 119.189
2008 Q1 136.544 222.770 230.109 128.066
2008 Q2  88.879 282.076 107.430  99.471
2008 Q3 121.951 304.979 115.758 111.243
2008 Q4 109.858 303.481 218.864 115.636
2009 Q1 106.123 221.287 210.109 119.158
2009 Q2  65.748 275.761 113.973 105.507
2009 Q3  88.371 311.431 116.517 118.979
2009 Q4  95.214 301.983 223.178 136.094
2010 Q1 109.072 228.162 213.568 127.535
2010 Q2  71.253 281.791  99.497 105.974
2010 Q3 117.876 330.812 108.208 111.615
2010 Q4  99.987 320.897 225.395 127.002
2011 Q1  92.889 239.103 188.560 125.264
2011 Q2  53.397 292.072 110.212 101.814
2011 Q3  96.467 311.994 107.089 101.925
2011 Q4  89.900 329.470 202.240 127.150
2012 Q1  98.180 247.910 194.640 129.520
2012 Q2  59.760 301.880  92.970 105.700
2012 Q3 101.900 319.840 101.690 106.540
autoplot(arrivals)

autoplot(arrivals, facets = TRUE)

autoplot(arrivals, facets = TRUE) +
  geom_smooth() +
  labs("Llegadas internacionales a Australia",
       y = "llegadas (miles)",
       x = NULL)

8 Promedio diario industrial Dow Jone

getSymbols("^DJI",from = "2016/12/31",
           to = "2018/12/31",
           periodicity = "daily")
[1] "DJI"
y <- DJI$DJI.Close
library(xts)
plot(y)

#note el comportamiento en diferentes segmentos de tiempo.
plot(y[1:200])

plot(y[1:100])

9 Paquetes en R y extensiones

Existen una variedad de formas de definir objetos de series temporales en R y distintos paquetes para graficar.

https://cran.r-project.org/web/views/TimeSeries.html

Les puede servir:

https://www.data-to-viz.com/