library(ggplot2)
library(forecast)
library(fpp2)Tema V: Modelos de series temporales
Curso: Análisis de series temporales
1 librerías
2 Ejemplo de ruido blanco
set.seed(1000)
w = rnorm(500,0,1)
ts.plot(w)
acf(w,lag.max = 50,main="estimación de acf de w")
3 Ejemplo de medias móviles
w = rnorm(500,0,1)
v = stats::filter(w, sides=2, filter=rep(1/3,3)) # moving average
v = na.omit(v)
ts.plot(v)
acf(v,lag.max = 50,main="estimación de acf de v")
w = rnorm(500,0,1)
v = filter(w, sides=2, filter=rep(1/7,7)) # moving average
v = na.omit(v)
ts.plot(v)
acf(v,lag.max = 50,main="estimación de acf de v")
4 Ejemplo de pasajeros de aerolínea
data(AirPassengers)
plot.ts(AirPassengers)
AP.v1 = stats::filter(AirPassengers, sides=2, filter=rep(1/3,3)) # moving average
AP.v2 = stats::filter(AirPassengers, sides=2, filter=rep(1/6,6)) # moving average
AP.v3 = stats::filter(AirPassengers, sides=2, filter=rep(1/12,12)) # moving average
points(AP.v1,type="l",col=2)
points(AP.v2,type="l",col=3)
points(AP.v3,type="l",col=4)
legend("topleft",legend=c("MA-3","MA-6","MA-12"),
col=c(2,3,4),lty=1)
5 Señal+ruido
cs = 2*cos(2*pi*1:500/50 + .6*pi); w = rnorm(500,0,1)
par(mfrow=c(3,1), mar=c(3,2,2,1), cex.main=1.5)
plot.ts(cs, main=expression(2*cos(2*pi*t/50+.6*pi)))
plot.ts(cs+w, main=expression(2*cos(2*pi*t/50+.6*pi) + N(0,1)))
plot.ts(cs+5*w, main=expression(2*cos(2*pi*t/50+.6*pi) + N(0,25)))
7 Ejemplo de graduados de ITCR
itcrgrad<-read.csv("ITCR.csv",sep=",")
y<-ts(itcrgrad$graduados,start=1975)
autoplot(y) 
ggAcf(y)
w=diff(y)
autoplot(w) 
ggAcf(w)
8 Ejemplo de turistas
turistas<-read.csv("turistas.csv",sep=";")
y<-ts(turistas$turistas,start=c(1991,1),frequency=12)
autoplot(y) 
ggAcf(y)
ggAcf(y, lag.max = 50)
w=diff(y)
autoplot(w) 
ggAcf(w, lag.max = 50)
autoplot(log(y)) 
ggAcf(log(y), lag.max = 50)
logw=diff(log(y))
autoplot(logw) 
ggAcf(logw,lag.max=50)

