Tema VIII-a: Modelos no lineales: ARCH y GARCH.

Curso: Series Cronológicas

Autor/a
Afiliación

Shu Wei Chou Chen

Escuela de Estadística, UCR

1 librerías

library(forecast)
library(astsa)
library(fGarch)
library(tseries)
library(xts)
library(TSA)
library(car)
library(quantmod)

2 Ejemplos simulados

2.1 ARCH(1)

set.seed(123456)
spec = garchSpec(model = list(gamma=0.01,alpha = c(0.8), beta = 0))
y1<-garchSim(spec, n = 1000)
ts.plot(y1)

acf2(y1)

     [,1] [,2]  [,3]  [,4]  [,5]  [,6] [,7]  [,8] [,9] [,10] [,11] [,12] [,13]
ACF     0 0.04 -0.01 -0.01 -0.02 -0.01    0 -0.01    0 -0.04  0.08  0.02 -0.02
PACF    0 0.04 -0.01 -0.02 -0.02 -0.01    0 -0.01    0 -0.04  0.08  0.02 -0.03
     [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
ACF   0.02  0.03 -0.02     0 -0.02 -0.05  0.02  0.01 -0.02 -0.03  0.03  0.03
PACF  0.02  0.03 -0.02     0 -0.02 -0.05  0.02  0.02 -0.03 -0.04  0.04  0.03
     [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37]
ACF   0.03 -0.01  0.04 -0.04 -0.01 -0.05  0.03  0.00 -0.04 -0.02  0.01  0.05
PACF  0.01 -0.01  0.04 -0.04  0.00 -0.04  0.03  0.01 -0.04 -0.03  0.01  0.05
     [,38] [,39] [,40] [,41] [,42]
ACF  -0.01 -0.02  0.02  0.01  0.01
PACF -0.01 -0.04  0.02  0.01  0.01
ts.plot(y1^2)

acf2(y1^2)

     [,1] [,2] [,3]  [,4] [,5]  [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
ACF  0.57 0.38 0.24  0.11 0.10  0.06 0.04 0.03 0.02  0.03  0.04  0.03  0.05
PACF 0.57 0.08 0.00 -0.07 0.08 -0.02 0.00 0.00 0.01  0.03  0.02 -0.01  0.04
     [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
ACF   0.05  0.07  0.02  0.00 -0.02 -0.02 -0.04 -0.04 -0.05 -0.05 -0.04 -0.05
PACF  0.01  0.04 -0.07 -0.01 -0.02  0.03 -0.05  0.00 -0.03  0.01 -0.02 -0.01
     [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37]
ACF  -0.04 -0.05 -0.05 -0.05 -0.04 -0.05 -0.01  0.00  0.02  0.01 -0.01 -0.03
PACF -0.02 -0.02 -0.01 -0.01 -0.01 -0.01  0.04  0.02  0.01 -0.01 -0.02 -0.02
     [,38] [,39] [,40] [,41] [,42]
ACF  -0.03 -0.03 -0.06 -0.06 -0.05
PACF  0.00 -0.01 -0.04 -0.01  0.01

2.2 ARCH(2)

spec = garchSpec(model = list(alpha = c(0.2, 0.4), beta = 0))
y1<-garchSim(spec, n = 1000)
ts.plot(y1)

acf2(y1)

     [,1] [,2] [,3] [,4] [,5] [,6]  [,7]  [,8] [,9] [,10] [,11] [,12] [,13]
ACF  0.02 -0.1 0.04 0.02    0 0.05 -0.02 -0.01 0.04 -0.07 -0.05  0.03  0.00
PACF 0.02 -0.1 0.04 0.01    0 0.05 -0.03  0.00 0.04 -0.08 -0.04  0.02 -0.01
     [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
ACF  -0.02  0.01  0.04 -0.03 -0.03 -0.05 -0.04 -0.02  0.05     0 -0.04  0.03
PACF -0.01  0.01  0.04 -0.03 -0.03 -0.06 -0.05 -0.04  0.04     0 -0.03  0.04
     [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37]
ACF  -0.04 -0.03  0.04  0.03     0  0.04 -0.04 -0.03  0.05  0.01 -0.01  0.05
PACF -0.04 -0.02  0.02  0.03     0  0.03 -0.04 -0.01  0.03  0.01  0.01  0.03
     [,38] [,39] [,40] [,41] [,42]
ACF   0.03 -0.03  0.03  0.06  0.02
PACF  0.02 -0.02  0.02  0.06  0.03
ts.plot(y1^2)

acf2(y1^2)

     [,1] [,2]  [,3]  [,4] [,5]  [,6] [,7]  [,8] [,9] [,10] [,11] [,12] [,13]
ACF  0.47 0.57  0.34  0.31 0.24  0.18 0.15  0.09 0.12  0.11  0.10  0.11  0.05
PACF 0.47 0.45 -0.02 -0.04 0.04 -0.02 0.00 -0.02 0.06  0.06 -0.02  0.03 -0.05
     [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
ACF   0.04  0.02  0.00  0.02 -0.01  0.00 -0.01  0.00 -0.01 -0.01 -0.04 -0.04
PACF -0.06  0.02 -0.01  0.03 -0.02 -0.02  0.01  0.01 -0.02 -0.01 -0.04 -0.01
     [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37]
ACF  -0.04 -0.05 -0.04 -0.04  0.00 -0.01  0.03 -0.02  0.01 -0.02 -0.01 -0.02
PACF  0.01 -0.01  0.01  0.00  0.04  0.00  0.03 -0.05  0.00 -0.01 -0.01  0.01
     [,38] [,39] [,40] [,41] [,42]
ACF  -0.05 -0.03 -0.05 -0.03 -0.05
PACF -0.05 -0.01  0.01  0.01 -0.04

2.3 GARCH(1,1)

spec = garchSpec(model = list(alpha = 0.2, beta = 0.4))
y1<-garchSim(spec, n = 2000)
ts.plot(y1)

acf2(y1)

      [,1] [,2] [,3] [,4] [,5] [,6]  [,7] [,8] [,9] [,10] [,11] [,12] [,13]
ACF  -0.02 0.01    0    0    0    0 -0.03 0.02 0.04     0     0  0.02  0.01
PACF -0.02 0.00    0    0    0    0 -0.03 0.02 0.04     0     0  0.02  0.01
     [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
ACF      0  0.02 -0.04  0.00  0.00 -0.02 -0.04 -0.02 -0.03     0  0.01 -0.02
PACF     0  0.02 -0.04 -0.01 -0.01 -0.02 -0.05 -0.03 -0.03     0  0.01 -0.01
     [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37]
ACF  -0.02 -0.01  0.01  0.07  0.04 -0.05  0.02 -0.01 -0.01 -0.02  0.02 -0.01
PACF -0.02 -0.02  0.02  0.08  0.05 -0.04  0.02 -0.01 -0.01 -0.02  0.03 -0.01
     [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49]
ACF   0.00  0.01  0.02  0.00  0.01  0.00     0 -0.01  0.00  0.03  0.01 -0.01
PACF -0.02  0.01  0.02 -0.01  0.00  0.01     0 -0.01  0.01  0.03  0.02 -0.01
     [,50] [,51] [,52] [,53] [,54] [,55]
ACF      0 -0.01  0.03 -0.03  0.01 -0.01
PACF     0 -0.01  0.03 -0.03  0.01 -0.01
ts.plot(y1^2)

acf2(y1^2)

     [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
ACF  0.26 0.11  0.03 0.04 0.02 0.02 0.01 0.02 0.04 -0.03 -0.03 -0.01 -0.02
PACF 0.26 0.04 -0.01 0.04 0.00 0.01 0.00 0.01 0.03 -0.06 -0.01  0.00 -0.02
     [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
ACF  -0.01 -0.03 -0.03 -0.03  0.02  0.01  0.03  0.05  0.03  0.02 -0.01     0
PACF  0.00 -0.03 -0.02 -0.02  0.04  0.01  0.02  0.04  0.00  0.01 -0.02     0
     [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37]
ACF   0.01  0.04  0.04  0.06  0.06  0.07  0.01  0.01  0.00  0.01  0.02  0.02
PACF  0.01  0.03  0.02  0.04  0.03  0.04 -0.03  0.00 -0.01  0.01  0.01  0.01
     [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49]
ACF  -0.04 -0.04 -0.03  0.00  0.00 -0.02 -0.01  0.00     0 -0.02  0.01  0.04
PACF -0.06 -0.02 -0.01  0.01  0.01 -0.02  0.01  0.01     0 -0.02  0.02  0.03
     [,50] [,51] [,52] [,53] [,54] [,55]
ACF   0.00  0.00  0.01  0.02  0.04  0.01
PACF -0.03 -0.01  0.01  0.01  0.03 -0.01

3 Ejemplos:

3.1 promedio diario industrial Dow Jone

data(djia)

y<-djia$Close
plot(y)

ts.plot(y)

retorno<-diff(log(y))
ts.plot(retorno)

acf2(y)

     [,1] [,2] [,3]  [,4] [,5] [,6] [,7] [,8]  [,9] [,10] [,11] [,12] [,13]
ACF     1 1.00 0.99  0.99 0.99 0.99 0.99 0.99  0.99  0.98  0.98  0.98  0.98
PACF    1 0.05 0.03 -0.01 0.01 0.03 0.02 0.02 -0.01  0.01 -0.03  0.01 -0.03
     [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
ACF   0.98  0.98  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.96  0.96  0.96
PACF -0.01  0.02  0.03 -0.02 -0.01  0.03 -0.01 -0.03  0.01 -0.01  0.00  0.01
     [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37]
ACF   0.96  0.96  0.96  0.96  0.95  0.95  0.95  0.95  0.95  0.95  0.95  0.95
PACF  0.02  0.01 -0.02  0.03  0.00  0.00  0.00  0.01  0.00  0.03  0.00  0.00
     [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49]
ACF   0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.93  0.93  0.93  0.93
PACF -0.01  0.00  0.01 -0.01 -0.03  0.01  0.03  0.00  0.02  0.02  0.00  0.00
     [,50] [,51] [,52] [,53] [,54] [,55] [,56] [,57] [,58] [,59] [,60] [,61]
ACF   0.93  0.93  0.93  0.93  0.93  0.93  0.92  0.92  0.92  0.92  0.92  0.92
PACF  0.03  0.02  0.00 -0.01  0.00  0.01 -0.03  0.01  0.01  0.00  0.00  0.01
acf2(retorno)

     [,1]  [,2] [,3]  [,4]  [,5] [,6]  [,7] [,8]  [,9] [,10] [,11] [,12] [,13]
ACF  -0.1 -0.06 0.05 -0.02 -0.06 0.01 -0.02 0.02 -0.01  0.04 -0.01  0.04  0.01
PACF -0.1 -0.07 0.04 -0.02 -0.06 0.00 -0.02 0.03 -0.01  0.04 -0.01  0.04  0.02
     [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
ACF  -0.04 -0.06  0.06  0.00 -0.07  0.02  0.05 -0.06  0.04  0.01 -0.01     0
PACF -0.04 -0.06  0.04  0.02 -0.06  0.00  0.04 -0.04  0.03  0.00  0.00     0
     [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37]
ACF      0  0.03 -0.03  0.01  0.02 -0.02  0.01  0.01 -0.09  0.03  0.03 -0.02
PACF     0  0.04 -0.03  0.00  0.02  0.00  0.00  0.01 -0.07  0.01  0.02  0.01
     [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49]
ACF      0  0.03  0.02  0.01  0.00 -0.06     0     0 -0.01  0.02  0.00 -0.04
PACF     0  0.01  0.04  0.02  0.01 -0.06     0     0 -0.01  0.01 -0.01 -0.05
     [,50] [,51] [,52] [,53] [,54] [,55] [,56] [,57] [,58] [,59] [,60] [,61]
ACF  -0.04 -0.02  0.03  0.00  0.00  0.01 -0.03  0.02  0.02 -0.07  0.02  0.02
PACF -0.04 -0.03  0.01  0.01  0.02  0.01 -0.03  0.01  0.02 -0.05  0.01  0.02
mod1 = Arima(retorno, order=c(1,0,1))
summary(mod1)
Series: retorno 
ARIMA(1,0,1) with non-zero mean 

Coefficients:
         ar1      ma1   mean
      0.2819  -0.3925  2e-04
s.e.  0.1595   0.1532  2e-04

sigma^2 = 0.0001446:  log likelihood = 7556.85
AIC=-15105.69   AICc=-15105.68   BIC=-15082.37

Training set error measures:
                       ME       RMSE         MAE  MPE MAPE      MASE
Training set 1.888577e-07 0.01201903 0.007879226 -Inf  Inf 0.6620624
                    ACF1
Training set 0.002990262
acf2(mod1$res)

     [,1]  [,2] [,3]  [,4]  [,5] [,6]  [,7] [,8]  [,9] [,10] [,11] [,12] [,13]
ACF     0 -0.02 0.06 -0.02 -0.06 0.01 -0.02 0.02  0.00  0.04 -0.01  0.04  0.01
PACF    0 -0.02 0.06 -0.02 -0.05 0.00 -0.02 0.03 -0.01  0.04 -0.01  0.04  0.01
     [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
ACF  -0.05 -0.05  0.05  0.00 -0.07  0.02  0.04 -0.05  0.04  0.01 -0.01     0
PACF -0.04 -0.05  0.05  0.01 -0.06  0.01  0.03 -0.04  0.03  0.00  0.00     0
     [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37]
ACF      0  0.03 -0.03  0.01  0.02 -0.01  0.01  0.01 -0.08  0.02  0.03 -0.01
PACF     0  0.04 -0.04  0.01  0.02  0.00  0.00  0.00 -0.07  0.02  0.02  0.01
     [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49]
ACF   0.01  0.03  0.03  0.01     0 -0.06  0.00     0 -0.01  0.01 -0.01 -0.04
PACF  0.00  0.02  0.04  0.02     0 -0.06  0.01     0 -0.01  0.01 -0.02 -0.05
     [,50] [,51] [,52] [,53] [,54] [,55] [,56] [,57] [,58] [,59] [,60] [,61]
ACF  -0.04 -0.02  0.03  0.00  0.00  0.01 -0.03  0.01  0.02 -0.06  0.02  0.02
PACF -0.04 -0.02  0.02  0.01  0.02  0.00 -0.03  0.01  0.01 -0.05  0.02  0.02
checkresiduals(mod1,lag=20)


    Ljung-Box test

data:  Residuals from ARIMA(1,0,1) with non-zero mean
Q* = 64.409, df = 18, p-value = 3.892e-07

Model df: 2.   Total lags used: 20
acf2(mod1$res^2)

     [,1] [,2] [,3] [,4] [,5] [,6] [,7]  [,8] [,9] [,10] [,11] [,12] [,13]
ACF   0.2 0.44 0.20 0.34 0.34 0.32 0.33  0.22 0.33  0.24  0.42  0.28  0.26
PACF  0.2 0.42 0.08 0.16 0.24 0.12 0.12 -0.01 0.09  0.04  0.20  0.08 -0.07
     [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
ACF   0.15  0.23  0.27  0.26  0.27  0.17  0.24  0.24  0.19  0.28  0.14   0.2
PACF -0.14 -0.02  0.06  0.04  0.03 -0.03  0.01  0.09 -0.09  0.05 -0.03   0.0
     [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37]
ACF   0.15  0.28  0.24  0.21  0.16  0.16  0.22  0.13  0.25  0.09  0.18  0.12
PACF  0.01  0.10  0.06 -0.03 -0.04  0.01  0.02 -0.08  0.05 -0.02 -0.03  0.01
     [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49]
ACF   0.17  0.14  0.10  0.08  0.08  0.11  0.12  0.13  0.09  0.09  0.11  0.07
PACF -0.06 -0.07 -0.06 -0.05  0.03 -0.02  0.03  0.04  0.00  0.00  0.04 -0.03
     [,50] [,51] [,52] [,53] [,54] [,55] [,56] [,57] [,58] [,59] [,60] [,61]
ACF   0.08  0.06  0.09  0.06  0.10  0.06  0.12  0.09  0.07  0.08  0.05  0.08
PACF -0.03  0.02  0.06  0.01 -0.01 -0.08  0.08  0.05  0.00  0.00 -0.02  0.01

3.1.1 GARCH

retorno <- retorno[-1]
head(retorno)
                   Close
2006-04-21  0.0004019814
2006-04-24 -0.0009813081
2006-04-25 -0.0046924330
2006-04-26  0.0062939559
2006-04-27  0.0024646652
2006-04-28 -0.0013512402
garch11 <- garchFit(Close~garch(1,1), data=retorno, trace = FALSE)
class(garch11)
[1] "fGARCH"
attr(,"package")
[1] "fGarch"
isS4(garch11)
[1] TRUE
garch11@fit$matcoef
           Estimate   Std. Error   t value     Pr(>|t|)
mu     6.529185e-04 1.556582e-04  4.194565 2.733961e-05
omega  2.203263e-06 4.021494e-07  5.478718 4.284195e-08
alpha1 1.209236e-01 1.323726e-02  9.135090 0.000000e+00
beta1  8.615078e-01 1.326084e-02 64.966292 0.000000e+00

Revisar los gráficos que salen con plot(garch11)

#plot(garch11)

ACF de la serie original y de la serie original al cuadrado.

plot(garch11,which=4)

plot(garch11,which=5)

ACF de los residuales estandarizados y de los residuales estandarizados al cuadrado.

plot(garch11,which=9)

plot(garch11,which=10)

plot(garch11,which=11)

pronostico1<-predict(garch11,plot=TRUE,n.ahead=10)

3.1.2 ARMA-GARCH

arma_garch11 <- garchFit(Close~arma(1,1)+garch(1,1), data=retorno, trace = FALSE)

round(arma_garch11@fit$matcoef,4)
        Estimate  Std. Error  t value Pr(>|t|)
mu        0.0002      0.0002   1.3635   0.1727
ar1       0.6501      0.2505   2.5953   0.0095
ma1      -0.6948      0.2370  -2.9321   0.0034
omega     0.0000      0.0000   5.4852   0.0000
alpha1    0.1209      0.0133   9.0731   0.0000
beta1     0.8614      0.0133  64.5548   0.0000

3.1.3 Diagnósticos

plot(arma_garch11,which=9)    

plot(arma_garch11,which=10)   

plot(arma_garch11,which=11)

pronostico<-predict(arma_garch11,plot=TRUE,n.ahead=10)

3.2 CREF stock- 26/08/2004-15-08-2006

data(CREF)
plot(CREF)

r.cref=diff(log(CREF))*100
plot(r.cref); abline(h=0)

acf2(r.cref)

     [,1]  [,2] [,3]  [,4] [,5]  [,6]  [,7]  [,8]  [,9] [,10] [,11] [,12] [,13]
ACF  0.05 -0.07 0.04 -0.03 0.00 -0.05 -0.05 -0.05 -0.09  0.01  0.02 -0.06  0.03
PACF 0.05 -0.07 0.05 -0.04 0.01 -0.06 -0.04 -0.06 -0.08  0.01  0.01 -0.07  0.03
     [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
ACF   0.09 -0.05  0.07  0.05 -0.01 -0.01  0.02  0.03 -0.02  0.01 -0.06  0.00
PACF  0.07 -0.06  0.07  0.02 -0.01 -0.01  0.03  0.02  0.00  0.04 -0.08  0.03
     [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33]
ACF      0 -0.01  0.01 -0.09 -0.02  0.02  0.02  0.03
PACF     0 -0.02  0.01 -0.08 -0.03  0.01  0.02  0.01

3.2.1 Los retornos al cuadrado

plot(r.cref^2)

acf2(r.cref^2)

     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
ACF  0.01 0.05  0.1  0.1 0.02 0.06 0.04 0.14 0.05  0.20  0.05  0.14  0.12  0.00
PACF 0.01 0.05  0.1  0.1 0.01 0.04 0.02 0.12 0.04  0.19  0.02  0.10  0.08 -0.04
     [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
ACF  -0.04  0.03  0.02  0.10  0.05  0.11  0.02  0.08  0.10  0.04     0  0.06
PACF -0.09 -0.04 -0.01  0.06  0.03  0.05 -0.03  0.01  0.06  0.03     0  0.02
     [,27] [,28] [,29] [,30] [,31] [,32] [,33]
ACF  -0.03 -0.01 -0.02  0.07  0.03  0.01  0.02
PACF -0.04 -0.06 -0.06  0.00  0.00 -0.03 -0.01
garch11 <- garchFit(~garch(1,1), data=r.cref,trace=FALSE)
garch11@fit$matcoef
         Estimate  Std. Error   t value   Pr(>|t|)
mu     0.06282849  0.02742543  2.290884 0.02197010
omega  0.01769834  0.01040813  1.700434 0.08904931
alpha1 0.04906053  0.01937981  2.531528 0.01135667
beta1  0.90841914  0.03686718 24.640320 0.00000000
garch10 <- garchFit(~garch(1,0), data=r.cref,trace=FALSE)

garch11@fit$ics
     AIC      BIC      SIC     HQIC 
1.935193 1.968909 1.935066 1.948423 
garch10@fit$ics
     AIC      BIC      SIC     HQIC 
1.970613 1.995900 1.970541 1.980536 

3.2.2 Diagnósticos de GARCH11

plot(garch11,which=9)    

plot(garch11,which=10)   

plot(garch11,which=11)

3.2.3 Diagnósticos de GARCH10

plot(garch10,which=9)    

plot(garch10,which=10)   

plot(garch10,which=11)