Skip to contents

Compute and plot the estimated mean and confidence intervals of the non-parametric component of a `APLMS` object fited by `aplms()`.

Usage

# S3 method for class 'aplms'
plot(x, len = 100, plot = TRUE, level = 0.95, ...)

Arguments

x

an object with the result of fitting additive partial linear models with symmetric errors.

len

The desired length of the sequence of covariates to compute the non parametric component functions.

plot

a logical value to return plots. Default value is TRUE.

level

Confidence level.

...

other arguments.

Value

Return a list of all non parametric component functions with their confidence intervals. If plot=TRUE, the estimated nonparametric component functions are plotted.

Examples

data(temperature)
temperature.df = data.frame(temperature,time=1:length(temperature))
model<-aplms::aplms(temperature ~ 1,
                   npc=c("time"), basis=c("cr"),Knot=c(60),
                   data=temperature.df,family=Powerexp(k=0.3),p=1,
                   control = list(tol = 0.001,
                                  algorithm1 = c("P-GAM"),
                                  algorithm2 = c("BFGS"),
                                  Maxiter1 = 20,
                                  Maxiter2 = 25),
                   lam=c(10))
plot(model)

#> [[1]]
#>            cov        fmean    fmean_ls     fmean_li
#> 1     1.000000 -0.213215062 -0.38051702 -0.045913101
#> 2     2.424242 -0.157657300 -0.25860288 -0.056711725
#> 3     3.848485 -0.212090507 -0.32001771 -0.104163305
#> 4     5.272727 -0.357959506 -0.46898184 -0.246937174
#> 5     6.696970 -0.389381087 -0.48749987 -0.291262301
#> 6     8.121212 -0.309883662 -0.42979400 -0.189973326
#> 7     9.545455 -0.256507180 -0.35408994 -0.158924423
#> 8    10.969697 -0.268972025 -0.38269634 -0.155247707
#> 9    12.393939 -0.328028685 -0.43751976 -0.218537614
#> 10   13.818182 -0.362119686 -0.46252234 -0.261717030
#> 11   15.242424 -0.329739301 -0.44963766 -0.209840943
#> 12   16.666667 -0.236456854 -0.33345593 -0.139457776
#> 13   18.090909 -0.187783201 -0.30292439 -0.072642015
#> 14   19.515152 -0.226748006 -0.33476704 -0.118728976
#> 15   20.939394 -0.229175092 -0.33080619 -0.127543993
#> 16   22.363636 -0.240824195 -0.36025925 -0.121389135
#> 17   23.787879 -0.396329451 -0.49288877 -0.299770132
#> 18   25.212121 -0.472299770 -0.58853860 -0.356060937
#> 19   26.636364 -0.346859356 -0.45344989 -0.240268819
#> 20   28.060606 -0.352051750 -0.45504127 -0.249062233
#> 21   29.484848 -0.509917727 -0.62863393 -0.391201528
#> 22   30.909091 -0.553447782 -0.64976105 -0.457134516
#> 23   32.333333 -0.458669461 -0.57595336 -0.341385561
#> 24   33.757576 -0.319163400 -0.42430868 -0.214018119
#> 25   35.181818 -0.274962044 -0.37937956 -0.170544531
#> 26   36.606061 -0.343014587 -0.46081001 -0.225219168
#> 27   38.030303 -0.415401411 -0.51166773 -0.319135092
#> 28   39.454545 -0.397422379 -0.51569997 -0.279144793
#> 29   40.878788 -0.285716394 -0.38941287 -0.182019919
#> 30   42.303030 -0.281039407 -0.38691070 -0.175168109
#> 31   43.727273 -0.364210514 -0.48097224 -0.247448788
#> 32   45.151515 -0.295850803 -0.39226072 -0.199440886
#> 33   46.575758 -0.202393200 -0.32149651 -0.083289890
#> 34   48.000000 -0.258064413 -0.36036400 -0.155764823
#> 35   49.424242 -0.294762948 -0.40206745 -0.187458442
#> 36   50.848485 -0.243743271 -0.35944671 -0.128039829
#> 37   52.272727 -0.212056003 -0.30881412 -0.115297886
#> 38   53.696970 -0.223624912 -0.34332922 -0.103920599
#> 39   55.121212 -0.245821845 -0.34682625 -0.144817439
#> 40   56.545455 -0.216226869 -0.32497022 -0.107483516
#> 41   57.969697 -0.122563126 -0.23710176 -0.008024492
#> 42   59.393939 -0.022064966 -0.11936732  0.075237389
#> 43   60.818182  0.043246936 -0.07680916  0.163303035
#> 44   62.242424  0.058536017 -0.04133763  0.158409663
#> 45   63.666667  0.064177908 -0.04607577  0.174431583
#> 46   65.090909  0.064875182 -0.04834389  0.178094259
#> 47   66.515152  0.005296521 -0.09272732  0.103320363
#> 48   67.939394 -0.105963819 -0.22614647  0.014218833
#> 49   69.363636 -0.206727445 -0.30561597 -0.107838917
#> 50   70.787879 -0.189575482 -0.30134938 -0.077801580
#> 51   72.212121 -0.076046167 -0.18782007  0.035727734
#> 52   73.636364 -0.079103697 -0.17799222  0.019784831
#> 53   75.060606 -0.162040947 -0.28222360 -0.041858296
#> 54   76.484848 -0.159214768 -0.25723861 -0.061190926
#> 55   77.909091 -0.096978598 -0.21019767  0.016240479
#> 56   79.333333 -0.034892264 -0.14514594  0.075361411
#> 57   80.757576 -0.001654978 -0.10152862  0.098218668
#> 58   82.181818 -0.016382605 -0.13643870  0.103673494
#> 59   83.606061 -0.082110591 -0.17941295  0.015191763
#> 60   85.030303 -0.149307173 -0.26384581 -0.034768540
#> 61   86.454545 -0.164889347 -0.27363270 -0.056145994
#> 62   87.878788 -0.103394785 -0.20439919 -0.002390379
#> 63   89.303030 -0.035126676 -0.15483099  0.084577636
#> 64   90.727273 -0.062581265 -0.15933938  0.034176852
#> 65   92.151515 -0.079086931 -0.19479037  0.036616512
#> 66   93.575758 -0.021958536 -0.12926304  0.085345970
#> 67   95.000000 -0.042156899 -0.14445649  0.060142691
#> 68   96.424242 -0.106105596 -0.22520891  0.012997714
#> 69   97.848485 -0.041483460 -0.13789338  0.054926457
#> 70   99.272727  0.086897127 -0.02986460  0.203658853
#> 71  100.696970  0.174316765  0.06844547  0.280188063
#> 72  102.121212  0.217565731  0.11386926  0.321262206
#> 73  103.545455  0.202671643  0.08439406  0.320949227
#> 74  104.969697  0.115659933  0.01939361  0.211926256
#> 75  106.393939  0.087320078 -0.03047534  0.205115498
#> 76  107.818182  0.208210642  0.10379313  0.312628152
#> 77  109.242424  0.335094675  0.22994939  0.440239956
#> 78  110.666667  0.360344269  0.24306036  0.477628175
#> 79  112.090909  0.268794480  0.17248123  0.365107728
#> 80  113.515152  0.189627094  0.07091091  0.308343273
#> 81  114.939394  0.240639673  0.13765014  0.343629210
#> 82  116.363636  0.346623508  0.24003297  0.453214045
#> 83  117.787879  0.413779514  0.29754069  0.530018341
#> 84  119.212121  0.384577682  0.28801824  0.481137123
#> 85  120.636364  0.369334466  0.24989923  0.488769704
#> 86  122.060606  0.473909701  0.37227863  0.575540771
#> 87  123.484848  0.560667717  0.45264868  0.668686751
#> 88  124.909091  0.568661309  0.45351981  0.683802810
#> 89  126.333333  0.576904017  0.47990550  0.673902532
#> 90  127.757576  0.592069051  0.47217142  0.711966684
#> 91  129.181818  0.589034350  0.48862971  0.689438988
#> 92  130.606061  0.577041729  0.46755078  0.686532679
#> 93  132.030303  0.575296888  0.46156731  0.689026471
#> 94  133.454545  0.606978315  0.50938891  0.704567721
#> 95  134.878788  0.696587825  0.57665900  0.816516648
#> 96  136.303030  0.838493153  0.74033856  0.936647746
#> 97  137.727273  0.917933747  0.80690816  1.028959338
#> 98  139.151515  0.894514412  0.78638554  1.002643279
#> 99  140.575758  0.865726591  0.76474733  0.966705850
#> 100 142.000000  0.859592517  0.68831338  1.030871657
#>