Skip to contents

Extract Residuals for APLMS fits

Usage

# S3 method for class 'aplms'
residuals(object, ...)

Arguments

object

an object with the result of fitting additive partial linear models with symmetric errors.

...

other arguments.

Value

Returns a dataframe with the following columns

res

the residual,

res_pearson

the Pearson residual, and

res_quant

the normal quantile of the standarized resiudals.

Examples

data(temperature)
temperature.df = data.frame(temperature,time=1:length(temperature))
model<-aplms::aplms(temperature ~ 1,
                   npc=c("time"), basis=c("cr"),Knot=c(60),
                   data=temperature.df,family=Powerexp(k=0.3),p=1,
                   control = list(tol = 0.001,
                                  algorithm1 = c("P-GAM"),
                                  algorithm2 = c("BFGS"),
                                  Maxiter1 = 20,
                                  Maxiter2 = 25),
                   lam=c(10))
residuals(model)
#>               res   res_pearson     res_quant
#> 1   -1.332990e-02 -0.2106088686 -0.2423967282
#> 2    2.251732e-02  0.3557676419  0.4028831103
#> 3   -5.458648e-04 -0.0086245185 -0.0100997278
#> 4   -1.645237e-03 -0.0259943070 -0.0304174434
#> 5   -3.949526e-03 -0.0624014529 -0.0728448346
#> 6    8.222696e-03  0.1299164052  0.1507671860
#> 7    1.115841e-02  0.1762999242  0.2036461563
#> 8   -9.819812e-02 -1.5515041851 -1.5571538389
#> 9    1.667855e-02  0.2635165928  0.3015390072
#> 10   1.065490e-01  1.6834464095  1.6713382587
#> 11  -1.126152e-01 -1.7792901370 -1.7530875602
#> 12  -1.425071e-03 -0.0225157404 -0.0263516999
#> 13   3.085878e-02  0.4875604764  0.5438777952
#> 14   2.490774e-04  0.0039353560  0.0046090805
#> 15  -1.838830e-02 -0.2905302966 -0.3314480149
#> 16  -9.118167e-03 -0.1440646046 -0.1669555046
#> 17   4.749275e-02  0.7503728625  0.8129509105
#> 18   3.251822e-02  0.5137791643  0.5714189367
#> 19  -1.121446e-01 -1.7718549383 -1.7467802710
#> 20  -3.067120e-02 -0.4845967292 -0.5407542298
#> 21   9.054447e-02  1.4305785564  1.4507130418
#> 22   3.184321e-02  0.5031141736  0.5602357408
#> 23  -2.723337e-02 -0.4302800049 -0.4831302980
#> 24  -1.406319e-02 -0.2221946230 -0.2554116575
#> 25  -4.053083e-02 -0.6403763127 -0.7021699268
#> 26   8.149764e-02  1.2876410633  1.3225063086
#> 27   6.870109e-02  1.0854588670  1.1362795645
#> 28  -7.904023e-02 -1.2488145348 -1.2872049030
#> 29  -4.309613e-02 -0.6809074084 -0.7432836536
#> 30   3.455701e-03  0.0545991567  0.0637735841
#> 31   6.547899e-02  1.0345505813  1.0884062703
#> 32   8.257058e-03  0.1304593171  0.1513893215
#> 33  -2.896948e-02 -0.4577100189 -0.5123206660
#> 34  -1.030498e-01 -1.6281597621 -1.6237311838
#> 35   4.016129e-02  0.6345377140  0.6962183783
#> 36   1.263199e-01  1.9958203267  1.9343630380
#> 37  -2.225520e-02 -0.3516262158 -0.3983812895
#> 38  -1.159463e-01 -1.8319200642 -1.7975720645
#> 39   3.429044e-02  0.5417798371  0.6006529005
#> 40   3.461496e-02  0.5469071841  0.6059863132
#> 41  -4.436110e-02 -0.7008935334 -0.7634294642
#> 42   6.058323e-03  0.0957198914  0.1114334597
#> 43  -4.623123e-03 -0.0730441071 -0.0851977728
#> 44   3.656999e-02  0.5777961207  0.6379890527
#> 45  -7.991129e-03 -0.1262577097 -0.1465726653
#> 46  -5.805357e-02 -0.9172309071 -0.9764443535
#> 47   3.626706e-02  0.5730099163  0.6330444938
#> 48   3.477701e-03  0.0549467533  0.0641779770
#> 49   3.710601e-02  0.5862651338  0.6467255995
#> 50  -1.283167e-01 -2.0273696721 -1.9604041651
#> 51  -4.977260e-03 -0.0786393785 -0.0916823072
#> 52   7.459578e-02  1.1785934412  1.2228140612
#> 53   1.356213e-02  0.2142780231  0.2465223704
#> 54  -1.091969e-01 -1.7252824713 -1.7071417310
#> 55   3.969655e-02  0.6271948433  0.6887229490
#> 56  -2.646778e-03 -0.0418183915 -0.0488881310
#> 57  -1.183964e-02 -0.1870631742 -0.2158363981
#> 58   4.104975e-02  0.6485750502  0.7105148403
#> 59   1.159450e-03  0.0183189975  0.0214442662
#> 60  -8.181799e-02 -1.2927024448 -1.3270927292
#> 61   4.699839e-03  0.0742562096  0.0866031046
#> 62   8.105808e-02  1.2806961457  1.3162073509
#> 63  -2.799650e-02 -0.4423372557 -0.4959842058
#> 64  -4.639442e-02 -0.7330195013 -0.7956393545
#> 65   6.759635e-02  1.0680042858  1.1199123208
#> 66   1.689117e-02  0.2668759564  0.3052689990
#> 67  -9.884265e-02 -1.5616875226 -1.5660373538
#> 68  -1.470029e-03 -0.0232260685 -0.0271820743
#> 69   2.638877e-02  0.4169355195  0.4688619429
#> 70   5.790549e-02  0.9148913647  0.9741875045
#> 71  -4.004416e-02 -0.6326870043 -0.6943303230
#> 72  -5.081851e-02 -0.8029189501 -0.8650066908
#> 73  -8.760549e-04 -0.0138414342 -0.0162059281
#> 74   1.256502e-01  1.9852404267  1.9256098838
#> 75   3.778318e-03  0.0596964218  0.0697012769
#> 76  -3.407752e-02 -0.5384157243 -0.5971502794
#> 77  -1.148884e-01 -1.8152054053 -1.7834747329
#> 78   5.747674e-02  0.9081172084  0.9676473023
#> 79   7.232830e-02  1.1427678558  1.1896837522
#> 80  -7.910830e-05 -0.0012498901 -0.0014639371
#> 81  -9.037206e-02 -1.4278544024 -1.4482944557
#> 82  -8.481319e-03 -0.1340025866 -0.1554478068
#> 83   2.633800e-02  0.4161334388  0.4680029138
#> 84   1.017475e-01  1.6075827820  1.6059254797
#> 85  -8.441691e-02 -1.3337646866 -1.3641724897
#> 86  -2.782959e-02 -0.4397001573 -0.4931759428
#> 87   3.313923e-02  0.5235910228  0.5816838383
#> 88   2.700861e-02  0.4267288380  0.4793376144
#> 89  -8.952567e-02 -1.4144817404 -1.4364081787
#> 90   7.331074e-03  0.1158290185  0.1345982976
#> 91   5.261555e-02  0.8313116463  0.8929121918
#> 92  -4.336780e-02 -0.6851996189 -0.7476171893
#> 93  -1.645256e-02 -0.2599459946 -0.2975711767
#> 94   1.156409e-01  1.8270951692  1.7935055771
#> 95  -5.530952e-02 -0.8738756387 -0.9344622408
#> 96   5.674665e-03  0.0896582026  0.1044317110
#> 97  -5.308846e-02 -0.8387835610 -0.9002305220
#> 98   1.351486e-01  2.1353111653  2.0488279313
#> 99  -1.317415e-02 -0.2081480146 -0.2396277033
#> 100 -3.846711e-02 -0.6077700167 -0.6688376567
#> 101  9.246678e-03  0.1460950488  0.1692745354
#> 102  5.107930e-02  0.8070393902  0.8690659692
#> 103 -1.228722e-01 -1.9413484479 -1.8891853022
#> 104  3.789734e-02  0.5987678935  0.6595939033
#> 105  7.383692e-03  0.1166603648  0.1355538514
#> 106 -1.901836e-02 -0.3004850145 -0.3424208206
#> 107 -8.344586e-03 -0.1318422304 -0.1529736979
#> 108  3.381668e-02  0.5342945194  0.5928558145
#> 109  2.216149e-02  0.3501456144  0.3967707649
#> 110 -1.474052e-01 -2.3289635558 -2.2049952725
#> 111  6.374729e-03  0.1007190244  0.1172013434
#> 112  8.795271e-02  1.3896294414  1.4142576030
#> 113 -2.288394e-02 -0.3615600824 -0.4091721779
#> 114 -3.265638e-02 -0.5159621731 -0.5737047012
#> 115  1.231645e-02  0.1945967016  0.2243504904
#> 116  7.736491e-02  1.2223450257  1.2630167118
#> 117 -9.482132e-02 -1.4981515192 -1.5104107609
#> 118 -4.240388e-02 -0.6699699732 -0.7322233974
#> 119  1.562526e-01  2.4687489530  2.3158853171
#> 120  9.799069e-04  0.0154822673  0.0181258379
#> 121 -6.560148e-02 -1.0364859500 -1.0902339018
#> 122 -1.096286e-04 -0.0017321026 -0.0020287167
#> 123  3.361161e-02  0.5310545601  0.5894768688
#> 124  1.722294e-03  0.0272117939  0.0318400125
#> 125 -8.760028e-02 -1.3840611500 -1.4092837375
#> 126  2.716571e-02  0.4292109987  0.4819889184
#> 127  9.885247e-03  0.1561842761  0.1807819766
#> 128  1.905088e-02  0.3009987880  0.3429864271
#> 129 -1.024495e-01 -1.6186741322 -1.6155289976
#> 130 -7.109573e-03 -0.1123293542 -0.1305738978
#> 131  9.329788e-02  1.4740816159  1.4892106200
#> 132  2.923375e-05  0.0004618854  0.0005409887
#> 133 -5.104271e-03 -0.0806461185 -0.0940062774
#> 134 -1.033322e-02 -0.1632621443 -0.1888390022
#> 135 -1.779602e-02 -0.2811723481 -0.3211090558
#> 136  2.961651e-02  0.4679329521  0.5231524231
#> 137  7.773787e-02  1.2282376587  1.2684101402
#> 138 -3.813831e-02 -0.6025751513 -0.6635055484
#> 139 -1.200778e-01 -1.8971965571 -1.8523613250
#> 140  2.223155e-02  0.3512525968  0.3979749389
#> 141  1.118609e-01  1.7673721198  1.7429747279
#> 142 -4.422282e-02 -0.6987087071 -0.7612312280