Skip to contents

Print method for "aplms" class

Usage

# S3 method for class 'aplms'
summary(object, ...)

Arguments

object

an object with the result of fitting additive partial linear models with symmetric errors.

...

Other arguments passed to or from other methods.

Value

Prints the main results of the fitted APLMS model.

Examples

data(temperature)
temperature.df = data.frame(temperature,time=1:length(temperature))
model<-aplms::aplms(temperature ~ 1,
                   npc=c("time"), basis=c("cr"),Knot=c(60),
                   data=temperature.df,family=Powerexp(k=0.3),p=1,
                   control = list(tol = 0.001,
                                  algorithm1 = c("P-GAM"),
                                  algorithm2 = c("BFGS"),
                                  Maxiter1 = 20,
                                  Maxiter2 = 25),
                   lam=c(10))
summary(model)
#>  ---------------------------------------------------------------
#>  Additive partial linear models with symmetric errors 
#>  ---------------------------------------------------------------
#>  Sample size:  142 
#>  -------------------------- Model ---------------------------
#> 
#> aplms::aplms(formula = temperature ~ 1, npc = c("time"), basis = c("cr"), 
#>     Knot = c(60), data = temperature.df, family = Powerexp(k = 0.3), 
#>     p = 1, control = list(tol = 0.001, algorithm1 = c("P-GAM"), 
#>         algorithm2 = c("BFGS"), Maxiter1 = 20, Maxiter2 = 25), 
#>     lam = c(10))
#>  
#>  ------------------- Parametric component -------------------
#> 
#>           Estimate Std. Error t value  Pr(>|t|)    
#> intercept 0.056619     0.0041 13.8905 < 2.2e-16 ***
#> 
#>  ----------------- Non-parametric component ------------------ 
#> 
#>          Wald       df    Pr(>.)    
#> time 7589.838   58.583 < 2.2e-16 ***
#> 
#>  --------------- Autoregressive and Scale parameter ---------------- 
#> 
#>        Estimate Std. Error    Wald  Pr(>|t|)    
#> phi   0.0022992     0.0003  7.3902 1.242e-11 ***
#> rho1 -0.2571215     0.0662 -3.8866 0.0001568 ***
#>  
#> 
#> ------ Penalized Log-likelihood and Information criterion------
#> 
#>  Log-lik:  200.07 
#>  AIC    :  -276.97 
#>  AICc   :  -274.46 
#>  BIC    :  -94.94 
#>  GCV    :  0.01 
#> 
#>  --------------------------------------------------------------------